

M65 Hardware Design

GSM/GPRS Module Series

Rev. M65_Hardware_Design_V1.0

Date: 2019-07-02

Status: Released

www.quectel.com

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233 Tel: +86 21 5108 6236 Email: <u>info@guectel.com</u>

Or our local office. For more information, please visit: http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/technical.htm Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2019-07-02	Brooke WANG/ Andrea ZHANG	Initial

Contents

Abo	out th	ne Docu	ment		2
Cor	ntent	s			3
Tab	le In	dex			5
Fig	ure li	ndex			6
1	Intro	oductior	۱		8
	1.1.	Safe	ty Inform	ation	9
2	Pro	duct Co	ncept		10
_	2.1.			pription	
	2.2.	Key I	Features	·	10
	2.3.	Func	tional Di	agram	13
	2.4.	Evalu	uation Bo	pard	14
3	App	lication	Interfac	es	15
	3.1.	Gene	eral Desc	pription	15
	3.2.	Pin A	ssignme	ent	16
	3.3.	Pin D	Descriptio	on	17
	3.4.	Oper	ating Mc	des	22
	3.5.	Powe	er Supply	/	23
		3.5.1.	Power I	Features	23
		3.5.2.	Decrea	se Supply Voltage Drop	23
		3.5.3.	Referer	nce Design for Power Supply	24
		3.5.4.	Monitor	Power Supply	25
	3.6.	Powe	er-on/off	Scenarios	25
		3.6.1.	Power-	on	25
		3.6.2.	Power-	off	27
		3.6.	2.1.	Turn off Module Using PWRKEY Pin	27
		3.6.	2.2.	Turn off Module Using AT Command	28
		3.6.	2.3.	Under-voltage Automatic Shutdown	29
		3.6.3.	Restart		29
	3.7.	Powe	er Saving	J	30
		3.7.1.	Minimu	m Functionality Mode	30
		3.7.2.	Sleep N	1ode	31
		3.7.3.	Wake u	p Module from Sleep Mode	31
		3.7.4.	Summa	ry of State Transition	31
	3.8.	RTC	Backup	Power	31
	3.9.	UAR	T Interfa	ces	34
		3.9.1.	Main U	ART Port	35
		3.9.	1.1.	Features of Main UART Port	35
		3.9.	1.2.	Connection for Main UART Port	36
		3.9.2.	Debug	UART Port	38
3.7.2. 3 3.7.3. 4 3.7.4. 3 3.8. RTC E 3.9. UART 3.9.1. 1 3.9.1 3.9.1 3.9.1		Auxiliar	y UART Port	39	

	3.9	9.4.	UART Application	39
	3.10.	Audio	Interfaces	40
	3.1	0.1.	Decrease TDD Noise and Other Noises	41
	3.1	0.2.	Microphone Interface Design	42
	3.1	0.3.	Speaker Interface Design	43
	3.1	0.4.	Earphone Interface Design	45
	3.1	0.5.	Audio Characteristics	45
	3.11.	PCM	Interface*	46
	3.12.	(U)SI	M Interface	46
	3.13.	ADC		49
	3.14.	RI Be	haviors	49
	3.15.	Netw	ork Status Indication	51
	3.16.	RF T	ransmitting Signal Indication	51
4	Antenn	na Inte	erface	54
	4.1.	GSM	Antenna Interface	54
	4.1	.1.	Reference Design	54
	4.1	.2.	RF Output Power	55
	4.1	.3.	RF Receiving Sensitivity	56
	4.1	.4.	Operating Frequencies	56
	4.1	.5.	RF Cable Soldering	56
5	Electric	cal. R	eliability and Radio Characteristics	58
•			lute Maximum Ratings	
			ation and Storage Temperatures	
		•	er Supply Ratings	
	5.4.		ent Consumption	
	5.5.		rostatic Discharge	
6	Mecha	nical	Dimensions	63
•	6.1.		anical Dimensions of the Module	
	6.2.		mmended Footprint	
			and Bottom Views of the Module	
7	Storag	o and	Manufacturing	67
1	-		ge	
			Ifacturing and Soldering	
			aging	
8			References	
9			GPRS Coding Schemes	
10	Appen	dix C	GPRS Multi-slot Classes	77

Table Index

TABLE 1: KEY FEATURES	. 11
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	. 12
TABLE 3: IO PARAMETERS DEFINITION	
TABLE 4: PIN DESCRIPTION	. 17
TABLE 5: OVERVIEW OF OPERATING MODES	
TABLE 6: SUMMARY OF STATE TRANSITION	. 31
TABLE 7: PIN DEFINITION OF UART INTERFACES	. 34
TABLE 8: LOGIC LEVELS OF UART INTERFACES	. 35
TABLE 9: PIN DEFINITION OF AUDIO INTERFACES	
TABLE 10: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	
TABLE 11: TYPICAL SPEAKER CHARACTERISTICS	
TABLE 12: PIN DEFINITION OF (U)SIM INTERFACE	. 46
TABLE 13: PIN DEFINITION OF ADC	
TABLE 14: CHARACTERISTICS OF ADC	. 49
TABLE 15: RI BEHAVIORS	. 49
TABLE 16: WORKING STATE OF NETLIGHT	. 51
TABLE 17: PIN DEFINITION OF RFTXMON	. 52
TABLE 18: PIN DEFINITION OF GSM ANTENNA INTERFACE	. 54
TABLE 19: ANTENNA CABLE REQUIREMENTS	. 55
TABLE 20: ANTENNA REQUIREMENTS	
TABLE 21: RF OUTPUT POWER	. 55
TABLE 22: RF RECEIVING SENSITIVITY	. 56
TABLE 23: OPERATING FREQUENCIES	
TABLE 24: ABSOLUTE MAXIMUM RATINGS	
TABLE 25: OPERATING AND STORAGE TEMPERATURES	
TABLE 26: THE MODULE POWER SUPPLY RATINGS	
TABLE 27: THE MODULE CURRENT CONSUMPTION	. 60
TABLE 28: ELECTROSTATIC DISCHARGE CHARACTERISTICS (25°C, 45% RELATIVE HUMIDITY)	. 62
TABLE 29: RECOMMENDED THERMAL PROFILE PARAMETERS	. 68
TABLE 30: REEL PACKAGING	. 70
TABLE 31: REFERENCE DOCUMENTS	. 71
TABLE 32: TERMS AND ABBREVIATIONS	. 72
TABLE 33: DESCRIPTION OF DIFFERENT CODING SCHEMES	. 75
TABLE 34: GPRS MULTI-SLOT CLASSES	. 77

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	. 13
FIGURE 2: PIN ASSIGNMENT	. 16
FIGURE 3: VOLTAGE RIPPLE DURING TRANSMITTING	. 23
FIGURE 4: REFERENCE CIRCUIT FOR VBAT INPUT	. 24
FIGURE 5: REFERENCE CIRCUIT FOR POWER SUPPLY	. 25
FIGURE 6: TURN ON MODULE THROUGH AN OPEN COLLECTOR DRIVER	. 26
FIGURE 7: TURN ON THE MODULE THROUGH A BUTTON	. 26
FIGURE 8: TIMING OF TURNING ON THE MODULE	. 27
FIGURE 9: TIMING OF TURNING OFF THE MODULE	. 28
FIGURE 10: TIMING OF RESTARTING THE MODULE	. 30
FIGURE 11: VRTC SUPPLIED BY A NON-CHARGEABLE BATTERY	. 32
FIGURE 12: VRTC SUPPLIED BY A RECHARGEABLE BATTERY	. 33
FIGURE 13: VRTC SUPPLIED BY A CAPACITOR	. 33
FIGURE 14: REFERENCE DESIGN FOR FULL-FUNCTION UART PORT	. 37
FIGURE 15: REFERENCE DESIGN FOR THREE-WIRE UART PORT	. 37
FIGURE 16: REFERENCE DESIGN FOR MAIN UART PORT WITH HARDWARE FLOW CONTROL	. 38
FIGURE 17: REFERENCE DESIGN FOR FIRMWARE UPGRADE	. 38
FIGURE 18: REFERENCE DESIGN FOR AUXILIARY UART PORT	. 39
FIGURE 19: LEVEL MATCH DESIGN FOR 3.3V SYSTEM	. 39
FIGURE 20: SKETCH MAP FOR RS-232 INTERFACE MATCH	. 40
FIGURE 21: REFERENCE DESIGN FOR MICROPHONE INTERFACE	. 42
FIGURE 22: REFERENCE DESIGN FOR SPEAKER INTERFACE	. 43
FIGURE 23: REFERENCE DESIGN FOR SPEAKER WITH AN AMPLIFIER	. 43
FIGURE 24: REFERENCE DESIGN FOR HANDSET INTERFACE FOR AOUT2	. 44
FIGURE 25: REFERENCE DESIGN FOR SPEAKER WITH AN AMPLIFIER FOR AOUT2	. 44
FIGURE 26: REFERENCE DESIGN FOR EARPHONE INTERFACE	. 45
FIGURE 27: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH THE 8-PIN (U)SIM CARD	
CONNECTOR	. 47
FIGURE 28: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH THE 6-PIN (U)SIM CARD	
CONNECTOR	. 48
FIGURE 30: RI BEHAVIOR AS A CALLER	. 50
FIGURE 29: RI BEHAVIOR AS A RECEIVER OF VOICE CALLING	. 50
FIGURE 31: RI BEHAVIOR OF URC OR SMS RECEIVED	. 50
FIGURE 32: REFERENCE DESIGN FOR NETLIGHT	. 51
FIGURE 33: RFTXMON SIGNAL DURING BURST TRANSMISSION	. 52
FIGURE 34: RFTXMON SIGNAL DURING CALL	. 53
FIGURE 35: REFERENCE DESIGN FOR GSM ANTENNA	. 54
FIGURE 36: RF SOLDERING SAMPLE	. 57
FIGURE 37: M65 MODULE TOP AND SIDE DIMENSIONS	. 63
FIGURE 38: M65 MODULE BOTTOM DIMENSIONS	. 64
FIGURE 39: RECOMMENDED FOOTPRINT (TOP VIEW)	. 65

FIGURE 40: TOP VIEW OF THE MODULE	. 66
FIGURE 41: BOTTOM VIEW OF THE MODULE	. 66
FIGURE 42: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	. 68
FIGURE 43: TAPE DIMENSIONS	. 69
FIGURE 44: REEL DIMENSIONS	. 70
FIGURE 45: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	. 75
FIGURE 46: RADIO BLOCK STRUCTURE OF CS-4	. 76

1 Introduction

This document defines the M65 module and describes its air interface and hardware interfaces which are connected with customers' applications.

This document can help customers quickly understand M65 module interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application notes and user guides, customers can use M65 to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M65 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

	Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.
	Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.
•	Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.
11-1-1-	The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.
	In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

M65 is an industrial grade quad-band GSM/GPRS module that works at frequencies of GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz. Providing GPRS data transmission and GSM SMS service, M65 supports GPRS multi-slot class 1~12 (Class 12 by default) and GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to *Appendix B* & *C*.

M65 is an SMD type module with LCC package, which can be easily embedded into applications. It provides abundant hardware interfaces.

With the ultra-small size of 17.7mm ×15.8mm × 2.4mm, M65 can meet almost all the requirements for M2M applications, including vehicles, personal tracking, security system, wireless POS, industrial PDA, smart metering, remote maintenance and control, etc.

Designed with power saving technique, the current consumption of M65 is as low as 1.2mA in sleep mode when DRX is 5.

M65 integrates various Internet service protocols, such as TCP, UDP, FTP and PPP. Extended AT commands have been developed so that users can use these Internet service protocols easily.

M65 module fully complies with the RoHS directive of the European Union.

2.2. Key Features

The following table describes the detailed features of M65 module.

Table 1: Key Features

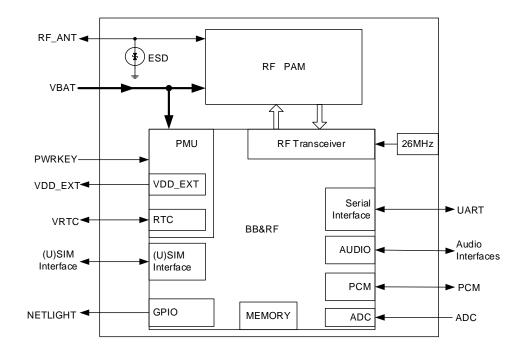
Features Implementation			
Power Supply	Single supply voltage: 3.45V~4.25V Typical supply voltage: 4.0V		
Power Saving	Typical power consumption in sleep mode: 1.2mA @DRX=5 1.1mA @DRX=9		
 Frequency Bands Quad-band: GSM850, EGSM900, DCS1800, PCS1900 The module can search these frequency bands automatically The frequency bands can be set by AT commands Compliant to GSM Phase 2/2+ 			
GSM Power Class	 Class 4 (2W) at GSM850 and EGSM900 Class 1 (1W) at DCS1800 and PCS1900 		
GPRS Connectivity	 GPRS multi-slot class 12 (default) GPRS multi-slot class 1~12 (configurable) GPRS mobile station class B 		
GPRS Data Features	 GPRS data downlink transfer: max. 85.6kbps GPRS data uplink transfer: max. 85.6kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 Support PAP (Password Authentication Protocol) and CHAP* (Challenge Handshake Authentication Protocol) protocols which are usually used for PPP connection Support Internet service protocols: TCP/UDP/PPP/HTTP/NTP/PING/ IPv6/TTS/FTP/SSL/MQTT/HTTPS* Support Unstructured Supplementary Service Data (USSD) 		
Temperature Ranges	 Operation temperature range: -35°C ~ +75°C ¹⁾ Extended temperature range: -40°C ~ +85°C ²⁾ Storage temperature range: -40°C ~ +90°C 		
SMS	 Text and PDU mode SMS storage: (U)SIM card 		
(U)SIM Interface	Support (U)SIM card: 1.8V and 3.0V		
Audio Features	 Speech codec modes: Half rate (ETS 06.20) Full rate (ETS 06.10) Enhanced full rate (ETS 06.50/06.60/06.80) Adaptive multi-rate (AMR) Echo suppression Noise reduction 		
UART Interfaces	 Main UART port: Full-function UART port Used for AT command communication and GPRS data transmission Support autobauding from 4800bps to 115200bps 		

	Debug UART port:		
	 Used for firmware upgrading and debugging 		
	 Fixed baud rates: 921600bps 		
	Auxiliary UART port:		
	 Used for AT command communication only 		
Phonebook Management	• Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA		
(U)SIM Application Toolkit	• Support SAT class 3, GSM 11.14 Release 99		
Real Time Clock (RTC)	Supported		
	• Size: (17.7±0.15)mm × (15.8±0.15)mm × (2.4±0.2)mm		
Physical Characteristics	Package: LCC		
	• Weight: Approx. 1.1g		
Firmware Upgrade	• Firmware upgrade via debug UART port or DFOTA		
Antonno Interfaco	GSM antenna interface		
Antenna Interface	 50Ω impedance 		

NOTES

- 1. ¹⁾ Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.
- 3. "*" means under development.

Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface


Coding Scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

2.3. Functional Diagram

The following figure shows a block diagram of M65 and illustrates the major functional parts.

- Power Management
- Memory
- Radio Frequency
- Peripheral Interfaces
 - Power Supply
 - PWRKEY
 - UART Interfaces
 - Audio Interfaces
 - PCM Interface*
 - (U)SIM Interface
 - ADC Interface
 - RF Interface

Figure 1: Module Functional Diagram

NOTE

"*" means under development.

2.4. Evaluation Board

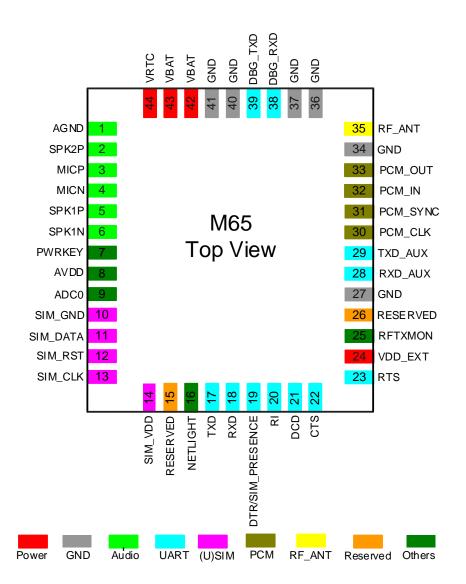
Quectel provides a complete set of development tools to facilitate the use and testing of M65 module. Quectel supplies a GSM-EVB (evaluation board), USB to RS-232 cable, micro USB cable, power adapter, antenna, RF components, etc., to control or test M65 module. For details, please refer to **document [3]**.

3 Application Interfaces

3.1. General Description

M65 module adopting LCC package has 44 pins. The subsequent chapters will provide detailed descriptions of the following interfaces/functions:

- Operating modes
- Power supply
- Power-on/off
- Power saving
- RTC
- UART interfaces
- Audio interfaces
- PCM interface*
- (U)SIM interface
- ADC interface
- Behaviors of the RI
- Network status indication
- RF transmitting signal indication


NOTE

"*" means under development.

3.2. Pin Assignment

The following figure shows the pin assignment of M65.

NOTE

Please keep all reserved pins open.

3.3. Pin Description

Table 3: IO Parameters Definition

Туре	Description
AI	Analog input
AO	Analog output
DI	Digital input
DO	Digital output
10	Bidirectional
PI	Power input
PO	Power output

Table 4: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT	42, 43	PI	Main power supply of module: VBAT=3.45V~4.25V	Vımax=4.25V Vımin=3.45V Vınorm=4.0V	It must be provided with sufficient current up to 2.0A.
VRTC	44	IO	Input: Supply power to RTC when VBAT is removed. Output: Charge for backup battery or ultra-capacitor when VBAT is applied.	Vımax=3.5V Vımin=3.0V Vınorm=3.3V Vomax=3.39V Vomin=2.99V Vonorm=3.1V Iomax=1.9mA Iin≈21µA	lf unused, keep this pin open.
VDD_EXT	24	PO	Supply 2.8V voltage for external circuit.	Vomax=2.9V Vomin=2.7V Vonorm=2.8V Iomax=20mA	 If unused, keep this pin open. It is recommended to add a 2.2µF ~4.7µF bypass

					capacitor when using this pin
					to supply
					power to
					external
					circuits.
	27, 34				
GND	36, 37		Ground		
	40, 41				
PWRKEY					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
			Turn-on/off key.	V _{IL} max=	
			PWRKEY should be	0.1×VBAT	
PWRKEY	7	DI	pulled down for a	Vıнmin=	
			moment to turn on/off	0.6×VBAT	
			the system.	ViHmax=3.1V	
Audio Interfac	ces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MICP,	3, 4	AI	Audio differential		lf unused, keep
MICN	3, 4	AI	input channel		these pins open.
SPK1P,	5, 6	AO	Audio differential	Refer to Chapter 3.10	lf unused, keep
SPK1N	5, 0	AU	output channel 1	Relei lo Chapter 3.10	these pins open.
SPK2P	2	AO	Audio single-ended		If unused, keep
SPR2P	Ζ	AU	output channel 2		this pin open.
			Analog ground.		
			Separate ground		
AGND	1		connection for		
			external audio		
			circuits.		
Network Statu	us Indicator				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
				V _{OH} min=	
NETLIGHT	16	DO	Network status	0.85×VDD_EXT	lf unused, keep
	10	00	indication	Volmax=	this pin open.
				0.15×VDD_EXT	
Main UART P	ort				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

TXD	17	DO	Transmit data	Vı∟min=0V		
RXD	18	DI	Receive data	_ V _{IL} max= 0.25×VDD_EXT	If only TXD, RXD and GND are used for communication, it is recommended	
DTR	19	DI	Data terminal ready	V⊮min= 0.75×VDD_EXT		
RI	20	DO	Ring indication	V _{IH} max=		
DCD	21	DO	Data carrier detection	⁻ VDD_EXT+0.2 Vонmin=		
CTS	22	DO	Clear to send	0.85×VDD_EXT V _{oL} max=	to keep all the other pins open.	
RTS	23	DI	Request to send	0.15×VDD_EXT		
Debug UART	Port					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
Pin Name DBG_TXD	Pin No. 39	I/O	Description Transmit data	DC Characteristics VILmin=0V VILmax=	Comment If unused, keep this pin open.	
			•	Vı∟min=0V	If unused, keep	

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
TXD_AUX	29	DO	Transmit data	Vı∟min=0V Vı∟max=	If unused, keep this pin open.
RXD_AUX	28	DI	Receive data	0.25×VDD_EXT VIHmin= 0.75×VDD_EXT VIHmax= VDD_EXT+0.2 V _{OH} min= 0.85×VDD_EXT V _{OL} max= 0.15×VDD_EXT	If unused, keep this pin open.

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SIM_VDD	14	PO	Power supply for (U)SIM card	Either 1.8V or 3.0V, selected by software automatically.	
SIM_CLK	13	DO	Clock signal of (U)SIM card	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	 All signals of (U)SIM interface should be protected against ESD
SIM_DATA	11	Ю	Data signal of (U)SIM card	VILmax= 0.25×SIM_VDD VIHmin= 0.75×SIM_VDD V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	with a TVS diode array. Maximum trace length from the module pad to (U)SIM card – connector is
SIM_RST	12	DO	Reset signal of (U)SIM card	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	200mm.
SIM_GND	10		Specified ground for (U)SIM card		
SIM_ PRESENCE	19	DI	(U)SIM card insertion detection	V IL min=0V V IL max= 0.25×VDD_EXT V IH min= 0.75×VDD_EXT V IH max= VDD_EXT+0.2	Function as DTR by default.
ADC					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
AVDD	8	PO	Reference voltage of ADC circuit	V _o max=2.9V V _o min=2.7V V _o norm=2.8V	lf unused, keep this pin open.
ADC0	9	AI	General purpose analog to digital converter	Voltage range: 0V to 1.8V	If unused, keep this pin open.
PCM Interface	*				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_ CLK	30	DO	PCM clock	V _{IL} min= 0V	If unused, keep

PCM_SYNC	31	DO	PCM frame synchronization	0.25×VDD_EXT V _{IH} min=	If unused, keep this pin open.
PCM_IN	32	DI	PCM data input	0.75×VDD_EXT V⊮max=	If unused, keep this pin open.
PCM_OUT	33	DO	PCM data output	VDD_EXT+0.2 Voнmin= 0.85×VDD_EXT Vo∟max= 0.15×VDD_EXT	If unused, keep this pin open.
Antenna Inter	face				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RF_ANT	35	Ю	GSM antenna pad		50Ω impedance
Transmitting \$	Signal Indi	cation			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
Pin Name	Pin No. 25	l/O DO	Description Transmission signal indication	DC Characteristics V _{OH} min= 0.85×VDD_EXT V _{OL} max= 0.15×VDD_EXT	Comment If unused, keep this pin open.
	25		Transmission signal	V _{OH} min= 0.85×VDD_EXT V _{OL} max=	lf unused, keep
RFTXMON	25		Transmission signal	V _{OH} min= 0.85×VDD_EXT V _{OL} max=	lf unused, keep
RFTXMON Other Interfac	25 e	DO	Transmission signal indication	V _{OH} min= 0.85×VDD_EXT Vo∟max= 0.15×VDD_EXT	If unused, keep this pin open.

"*" means under development.

3.4. Operating Modes

The following table briefly describes the various working modes of M65 module.

Mode	Function		
	GSM/GPRS sleep	After enabling sleep mode by AT+QSCLK=1 , the module will automatically enter sleep mode if DTR is set to high level and there is no interrupt (such as GPIO interrupt or data on UART port). In this case, the current consumption of module will reduce to the minimal level. During sleep mode, the module can still receive paging message and SMS from the system normally.	
	GSM idle	Software is active. The module has registered to GSM network and is ready to send and receive GSM data.	
Normal operation	GSM talk	GSM connection is ongoing. In this mode, the power consumption of module is decided by the configuration of power control level (PCL), dynamic DTX control and the working RF band.	
	GPRS idle	The module is not registered to GPRS network nor reachable through GPRS channel.	
	GPRS standby	The module is registered to GPRS network, but no GPRS PDP context is active. The SGSN knows the routing area where the module is located at.	
	GPRS ready	The PDP context is active, but no data transfer is ongoing. The module is ready to receive or send GPRS data. The SGSN knows the cell where the module is located at.	
	GPRS data	There is GPRS data in transfer. In this mode, the power consumption of module is decided by the PCL, working RF band and GPRS multi-slot configuration.	
Power down	Normal shutdown can be conducted by sending AT+QPOWD=1 or using PWRKEY. In this case, operating voltage (connected to VBAT) remains applied; the power management ASIC disconnects the power supply from the base band part of the module while only power supply for RTC is remained. Software is not active and the UART port is not accessible.		
Minimum functionality mode (without removing power supply)	active and the UART port is not accessible. AT+CFUN can be used to set the module to minimum functionality mode without removing the power supply. In this case, either the module's RF part or (U)SIM card does not work, or both of them are disabled; but the UART port is still accessible. The power consumption in this case is very low.		

Table 5: Overview of Operating Modes

3.5. Power Supply

3.5.1. Power Features

Power supply design is an important part of M65 application design. Due to the 577us burst in GSM part every 4.615ms, in a burst period, power supply must be able to deliver high peak current and the supply voltage should not drop below the minimum working voltage of module.

The maximum current consumption of module could reach 2.0A during a burst transmission, which will cause a large voltage drop on VBAT. In order to ensure the stability of the module's operation, it is recommended that the maximum voltage drop during the burst transmission should not exceed 400mV.

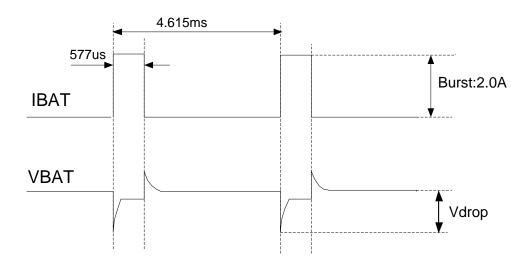
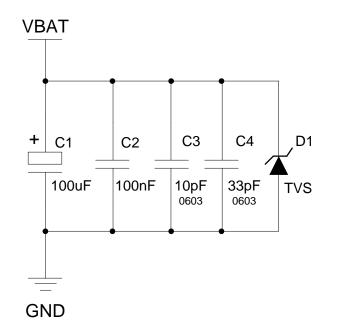


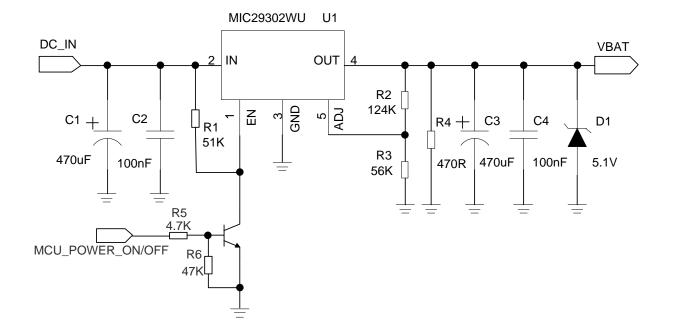
Figure 3: Voltage Ripple during Transmitting

3.5.2. Decrease Supply Voltage Drop

The power supply range of the module is 3.45V to 4.25V. Make sure that the input voltage will never drop below 3.45V even in a burst transmission. If the power voltage drops below 3.45V, the module could be turned off automatically. For better power performance, it is recommended to place a 100 μ F tantalum capacitor with low ESR (ESR=0.7 Ω), ceramic capacitors of 100nF, 33pF and 10pF, and TVS near the VBAT pin. The reference circuit is illustrated in the following figure.

The VBAT trace should be wide enough to ensure that there is not too much voltage drop during burst transmission. The width of VBAT trace should be no less than 2mm; and in principle, the longer the trace is, the wider it will be.




Figure 4: Reference Circuit for VBAT Input

3.5.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be provided with sufficient current up to 2.0A at least. If the voltage difference between the input and the output voltage is not too big, it is suggested to use an LDO to supply power for the module; if there is a big voltage difference between the input and the output voltage, a switcher power converter is preferred to be used.

The following figure shows a reference design for +5V input power supply. The designed output voltage for the power supply is 4.0V and the maximum load current is 3.0A. In order to ensure the stability of the output voltage, a zener diode is suggested to be placed close to VBAT pin. And it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1.0W.

NOTE

It is suggested to control the module's main power supply (VBAT) via LDO enable pin to restart the module when the module becomes abnormal. Power switch circuit like P-channel MOSFET switch circuit can also be used to control VBAT.

3.5.4. Monitor Power Supply

The command **AT+CBC** can be used to monitor the supply voltage of the module. The unit of the displayed voltage is mV. For details, please refer to the *document [1]*.

3.6. Power-on/off Scenarios

3.6.1. Power-on

M65 module can be turned on by driving PWRKEY to a low level for 1.6s. It is recommended use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated as below.

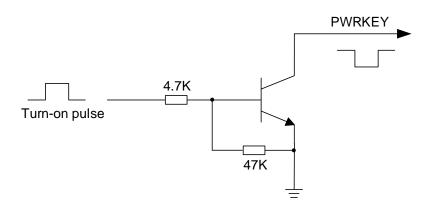


Figure 6: Turn on Module through an Open Collector Driver

NOTES

- 1. M65 is set to autobauding mode (AT+IPR=0) by default; in this mode, after module is powered on, URC "RDY" is not reported to the host controller. AT commands can be received by the module 4s~5s after it is powered on. Host controller should first send an "AT" string to the module so that the module can detect host controller's baud rate, and then continue to send the next "AT" string until "OK" returned from the module is received. Then AT+IPR=x;&W should be sent to set a fixed baud rate for the module and save the configuration to its flash memory. After the configuration is completed, URC "RDY" would be received from the main UART port every time the module is powered on. For more details, refer to the related content of AT+IPR in *document [1]*.
- 2. If AT command is responded, it indicates the module is turned on successfully; otherwise it indicates the module fails to be turned on.

The other way to control the PWRKEY is through a button directly. While pressing the button, electrostatic strike may generate from the finger, and thus, a TVS component is indispensable to be placed nearby the button for ESD protection and also for the best performance. A reference circuit is shown in the following figure.

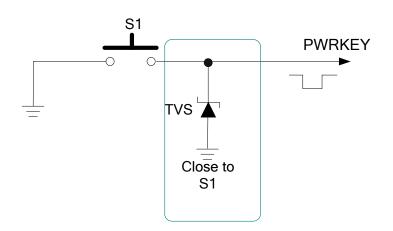


Figure 7: Turn on the Module through a Button

The timing of turning on the module is illustrated as the following figure.

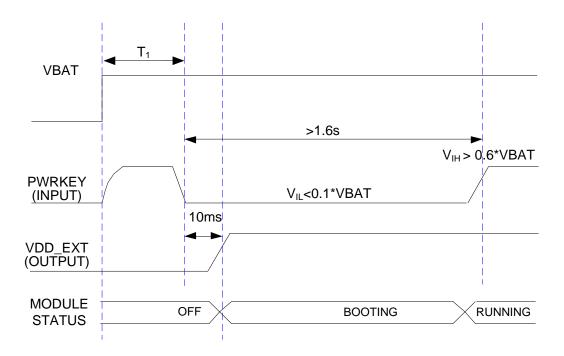


Figure 8: Timing of Turning on the Module

NOTE

Make sure that the VBAT voltage is stable before pulling down the PWRKEY pin. T1 (the time between power-on of VBAT and pull-off of PWRKEY pin) is recommended to be 100ms.

3.6.2. Power-off

The following procedures can be used to turn off the module:

- Normal power-off procedure: Turn off module using PWRKEY.
- Normal power-off procedure: Turn off module using AT+QPOWD=1.
- Under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.6.2.1. Turn off Module Using PWRKEY Pin

It is a safe way to turn off the module by driving PWRKEY to a low level for about 1.2s. The timing of turning off the module is illustrated below.

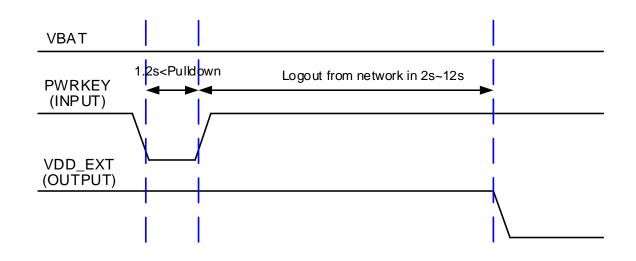


Figure 9: Timing of Turning off the Module

The power-off procedure causes the module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power-off procedure, the module sends out the URC shown below:

NORMAL POWER DOWN

Since then, no further AT commands can be executed. Then the module enters power-down mode, while RTC is still active.

NOTE

- 1. This URC does not appear when autobauding is applied and DTE and DCE are not correctly synchronized after start-up. It is recommended to set the module to a fixed baud rate.
- 2. As time of network logout is related to the local mobile network, it is recommended to delay for about 12s before disconnecting the power supply or restarting the module.

3.6.2.2. Turn off Module Using AT Command

It is also a safe way to turn off the module via command **AT+QPOWD=1**. This command causes the module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power-off procedure the module sends out the URC shown below:

NORMAL POWER DOWN

Since then, no further AT commands can be executed. And then the module enters power-down mode, while only RTC is still active.

Please refer to *document [1]* for details about AT command **AT+QPOWD**.

3.6.2.3. Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on VBAT. If the voltage is \leq 3.6V, the following URC will be presented:

UNDER_VOLTAGE WARNING

The normal input voltage range is from 3.45V to 4.25V. If the voltage is <3.45V, the module will automatically shut down.

If the voltage is <3.45V, the following URC will be presented:

UNDER_VOLTAGE POWER DOWN

Since then, no further AT commands can be executed. The module logs off from network and enters power-down mode, while only RTC is still active.

NOTE

These URCs do not appear when autobauding is applied and DTE and DCE are not correctly synchronized after start-up. It is recommended to set the module to a fixed baud rate.

3.6.3. Restart

The module can be restarted by driving PWRKEY to a low level for a certain time, which is similar to the way to turn on module. In order to make the internal LDOs discharge completely after turning off the module, it is recommended to delay for about 500ms before restarting the module. The restart timing is illustrated as the following figure.

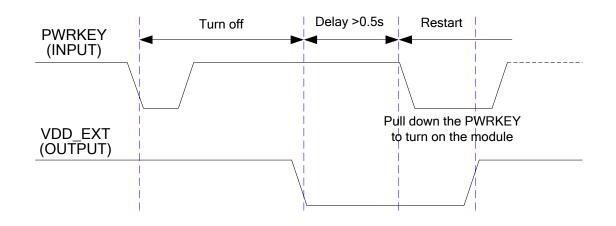


Figure 10: Timing of Restarting the Module

3.7. Power Saving

Based on system requirements, there are two ways to get M65 module into low current consumption status. One is to apply **AT+CFUN** to set module to minimum functionality mode, another is to apply **AT+QSCLK=1** to set module to sleep mode.

3.7.1. Minimum Functionality Mode

Minimum functionality mode reduces the functionality of M65 module to a minimum level, and the current consumption can also be minimized when slow clocking mode is activated at the same time. Minimum functionality mode is set by **AT+CFUN**, which provides the choice of the functionality levels <fun>=0, 1, 4.

- 0: minimum functionality
- 1: full functionality (default)
- 4: disable both transmitting and receiving of RF part

If M65 module is set to minimum functionality by **AT+CFUN=0**, RF and (U)SIM card functions would be disabled. In this case, the UART port is still accessible, but all AT commands related to RF or (U)SIM card functions will not be available.

If M65 module is set by **AT+CFUN=4**, RF function will be disabled, but the UART port is still active. In this case, all AT commands related to RF function will not be available.

For module already set by **AT+CFUN=0** or **AT+CFUN=4**, **AT+CFUN=1** can be used to set it back to full functionality.

For detailed information about AT+CFUN, please refer to the document [1].

3.7.2. Sleep Mode

The sleep mode is disabled by default. It can be enabled by **AT+QSCLK=1**.

If module is set by **AT+QSCLK=1**, customers can control the module to enter or exit from sleep mode through DTR pin. When DTR is set to high level, and there is no hardware interrupt such as GPIO interrupt or data on UART port, the module will enter sleep mode automatically. In this mode, the module can still receive voice, SMS or GPRS paging from network, but the UART port does not work.

3.7.3. Wake up Module from Sleep Mode

Module is in sleep mode can be woken up through the following ways.

- Pull down DTR pin for about 20ms.
- Receive a voice or data call from network.
- Receive an SMS from network.

NOTE

DTR pin should be held at low level during communication between the module and DTE.

3.7.4. Summary of State Transition

Table 6: Summary of State Transition

Current Mode	Next Mode				
Current Mode	Power Down	Normal Mode	Sleep Mode		
Power Down		Use PWRKEY			
Normal Mode	Use AT+QPOWD or PWRKEY		Use AT+QSCLK=1 and pull DTR up		
Sleep Mode	Use PWRKEY	Pull DTR down or incoming call/SMS/GPRS			

3.8. RTC Backup Power

For M65 module, RTC function is supported, and it is designed to work with an internal power supply.

There are three kinds of designs for RTC backup power:

• Use VBAT as RTC's power source.

When module is turned off while the main power supply (VBAT) is remained, RTC is still active as the RTC core is powered by VBAT. In this case, VRTC pin can be kept open.

• Use VRTC as RTC's power source.

If the main power supply (VBAT) is removed after the module is turned off, a backup supply such as a coin-cell battery or an ultra-capacitor can be used to supply power to VRTC pin to keep RTC active.

• Use VBAT and VRTC as RTC's power source.

It will lead an error of about 5 minutes per day when only powering VRTC pin to keep RTC active, hence it is recommended to power both VBAT and VRTC pins at the same time when RTC function is needed. The recommended power supply circuits for RTC core are shown as below.

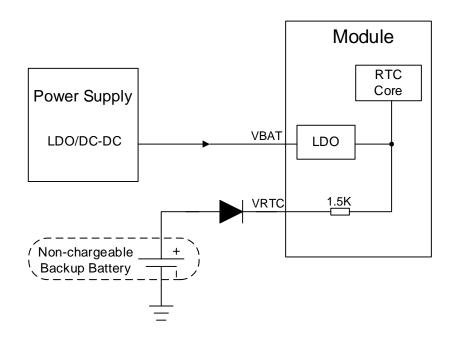


Figure 11: VRTC Supplied by a Non-chargeable Battery

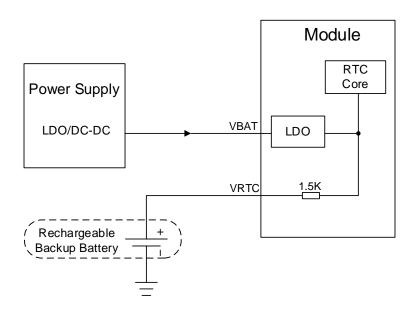


Figure 12: VRTC Supplied by a Rechargeable Battery

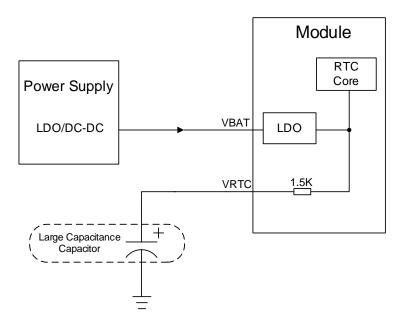


Figure 13: VRTC Supplied by a Capacitor

A rechargeable or non-chargeable coin-cell battery can also be used here, for more information, please visit <u>http://www.sii.co.jp/en</u>.

NOTE

Please keep the main power supply (VBAT) applied to ensure the accuracy of real time.

3.9. UART Interfaces

M65 provides three UART interfaces: main UART port, debug UART port and auxiliary UART port. The module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding is supported ranging from 4800bps to 115200bps.

Pin definition of UART interfaces is as follows:

Table 7: Pin Definition of UART Interfaces

Interface	Pin Name	Pin No.	Description
-	TXD	17	Transmit data
	RXD	18	Receive data
	DTR	19	Data terminal ready
Main UART Port	RI	20	Ring indication
	DCD	21	Data carrier detection
	CTS	22	Clear to send
	RTS	23	Request to send
Debug UART Port	DBG_RXD	38	Receive data
	DBG_TXD	39	Transmit data
	RXD_AUX	28	Receive data
Auxiliary UART Port	TXD_AUX	29	Transmit data

Main UART port:

- TXD: Send data to RXD of DTE.
- RXD: Receive data from TXD of DTE.
- RTS: Request to send.
- CTS: Clear to send.
- DTR: DTE is ready and inform DCE (this pin can wake the module up).
- RI: Ring indicator (when there is a call, SMS or URC output, the module will inform DTE through RI pin).
- DCD: Data carrier detection (the validity of this pin demonstrates successful set-up of the

communication link).

Hardware flow control is disabled by default. When hardware flow control is required, RTS and CTS should be connected to the host. **AT+IFC=2,2** is used to enable hardware flow control while **AT+IFC=0,0** is used to disable it. For more details, please refer to the *document [1]*.

Debug UART port:

- DBG_TXD: Send data to the COM port of peripheral.
- DBG_RXD: Receive data from the COM port of peripheral.

Auxiliary UART port:

- TXD_AUX: Send data to the RXD of DTE.
- RXD_AUX: Receive data from the TXD of DTE.

Logic levels of UART interfaces are described in the following table.

Table 8: Logic Levels of UART Interfaces

Parameter	Min.	Max.	Unit
VIL	0	0.25×VDD_EXT	V
ViH	0.75×VDD_EXT	VDD_EXT +0.2	V
Vol	0	0.15×VDD_EXT	V
Vон	0.85×VDD_EXT	VDD_EXT	V

3.9.1. Main UART Port

3.9.1.1. Features of Main UART Port

- Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, as well as other control lines DTR, DCD and RI.
- Used for AT command sending, GPRS data transmission, etc.
- Support the following baud rates: 2400bps, 4800bps, 9600bps, 14400bps, 19200bps, 28800bps, 38400bps, 57600bps and 115200bps.
- Module is set by default with autobauding applied in a range of 4800bps, 9600bps, 19200bps, 38400bps, 57600bps and 115200bps.
- The module disables hardware flow control by default. **AT+IFC=2,2** is used to enable hardware flow control.

After fixed baud rates or autobauding is set, please send "**AT**" string at that rate. If the UART port is ready, "**OK**" will be returned.

Autobauding is enabled by default. It allows the module to detect the baud rate automatically upon receiving "**AT**" string from the host or PC, which offers module flexibility without needs to consider which baud rate is used by the host controller. To take advantage of autobauding, special attention should be paid to the following requirements.

Synchronization between DTE and DCE:

When DCE (the module) is powered on with autobauding, it is recommended to wait for 4s~5s before sending the first "**AT**" string. If "**OK**" is then received, it suggests that DTE and DCE are correctly synchronized.

If the host controller needs URC in autobauding mode, synchronization should be conducted firstly; otherwise URC will be discarded.

Restrictions on setting of autobauding:

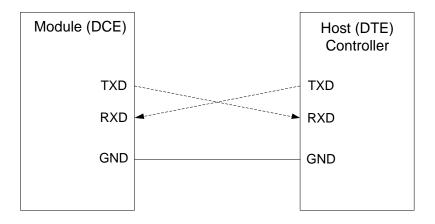
- The UART port has to be operated at 8 data bits without parity check bit or 1 stop bit (factory setting).
- Only the string "AT" can be detected ("At", "at", or "aT" cannot be detected).
- URC like "RDY", "+CFUN: 1" and "+CPIN: READY" will not be indicated if the module is turned on with autobauding enabled while without synchronization conducted in the first place.
- The module detects the new baud rate upon receiving the first "**AT**" string, before this, some other URC will be sent using the previous baud rate. Therefore, DTE may receive unknown strings after switching to new baud rate.
- It is not recommended to switch to autobauding from fixed baud rates.
- If autobauding is active, it is not recommended to switch to multiplexing mode.

NOTE

To assure reliable communication and avoid problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to set up a fixed baud rate instead of using autobauding after start-up. For more details, please refer to the content related to **AT+IPR** in *document [1]*.

3.9.1.2. Connection for Main UART Port

The connection between module and host using main UART port is very flexible. The following are three common connection methods.


Reference design for full-function UART port connection when it is applied in modulation-demodulation is shown as below.

Module (DCE)		Host (DTE) Controller
TXD		TXD
RXD		RXD
RTS	◄	RTS
CTS		CTS
DTR	◄	DTR
DCD		DCD
RI		RING
GND		GND

Figure 14: Reference Design for Full-Function UART Port

Three-wire UART port connection is shown as below.

Figure 15: Reference Design for Three-wire UART Port

Connection for main UART port with hardware flow control is shown as below. This connection will enhance the reliability of the mass data communication.

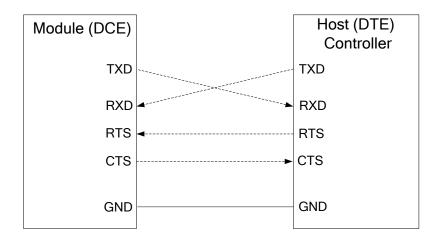
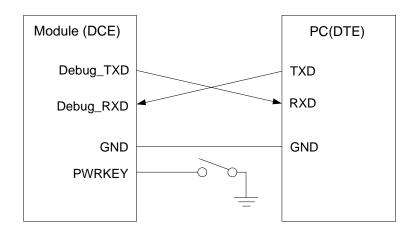



Figure 16: Reference Design for main UART Port with Hardware Flow Control

3.9.2. Debug UART Port

- Data lines: DBG_TXD and DBG_RXD.
- It outputs log information automatically.
- It is used for firmware debugging and upgrading with a fixed baud rate of 921600bps.

During the firmware upgrade process, the PWRKEY pin must be pulled down for more than 1.6s. For firmware upgrade, the following design can serve as a reference:

Figure 17: Reference Design for Firmware Upgrade

NOTE

The firmware of module might need to be upgraded due to certain reasons. It is recommended to reserve these pins in the host board for firmware upgrade.

3.9.3. Auxiliary UART Port

- Two data lines: TXD_AUX and RXD_AUX.
- Auxiliary UART port is used for AT command only and does not support GPRS data, multiplexing function, etc.
- Auxiliary UART port supports the following baud rates: 2400bps, 4800bps, 9600bps, 14400bps, 19200bps, 28800bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps and 921600bps.
- Auxiliary UART port could be used after sending AT+QEAUART=1 on main UART port.
- The baud rate is set as 115200bps by default, and autobauding is not supported. The baud rates can be modified by **AT+QSEDCB**. For more details, please refer to the *document [1]*.

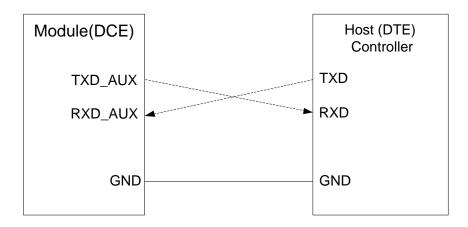
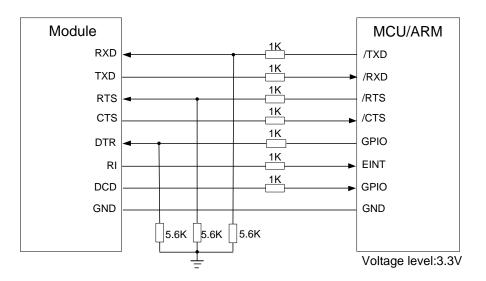



Figure 18: Reference Design for Auxiliary UART Port

3.9.4. UART Application

The reference design of 3.3V level match is shown as below. If the host is a 3.0V system, please use the 10K resistor instead of the 5.6K.

NOTE

If the level of the host is 3V or 3.3V, it is highly recommended to add resistor divider circuit to the UART signal lines. For higher voltage level system, the level shifter IC could be added between the host and the module. For more details about UART circuit design, please refer to *document [6]*.

The following figure shows a sketch map between module and the standard RS-232 interface. As the level of module is 2.8V, a RS-232 level shifter should be used. Please make sure that the I/O voltage of level shifter connected to module is 2.8V.

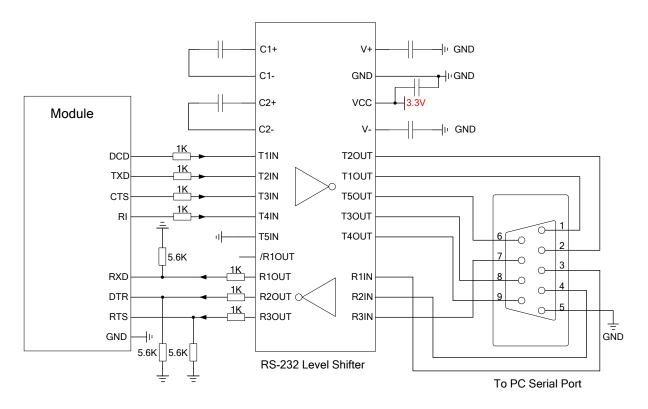


Figure 20: Sketch Map for RS-232 Interface Match

Please visit vendors' website to select suitable IC, such as: <u>http://www.maximintegrated.com</u> and <u>http://www.exar.com</u>.

3.10. Audio Interfaces

The module provides one analog input channel and two analog output channels.

Table 9: Pin Definition of Audio Interfaces

Interface	Pin Name	Pin No.	Description
	MICP	3	Microphone input (positive)
	MICN	4	Microphone input (negative)
AIN/AOUT1	SPK1P	5	Audio output Channel 1 (positive)
	SPK1N	6	Audio output Channel 1 (negative)
	MICP	3	Microphone input (positive)
	MICN	4	Microphone input (negative)
AIN/AOUT2	SPK2P	2	Audio output Channel 2 (positive)
	AGND	1	Form a pseudo-differential pair with SPK2P

AIN, which are differential input channels, can be applied for input of microphone (usually an electret microphone is used).

AOUT1 is used for output of receiver. It is a differential channel and typically applied for building a receiver into a handset.

AOUT2 is a single-ended channel and typically used for earphone. SPK2P and AGND can form a pseudo differential structure.

All these audio channels support voice and ringtone output, etc., and can be switched to each other by **AT+QAUDCH**. For more details, please refer to *document [1]*.

Use **AT+QAUDCH** to select audio channel:

- AT+QAUDCH=0: AIN/AOUT1, the default value is 0.
- **AT+QAUDCH=1:** AIN/AOUT2, this channel is always used for earphone.

For each channel, customers can use **AT+QMIC** to adjust the input gain level of microphone and **AT+CLVL** to adjust the output gain level of receiver and speaker. **AT+QSIDET** is used to set the side-tone gain level. For more details, please refer to *document [1]*.

3.10.1. Decrease TDD Noise and Other Noises

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) to filter out RF interference, thus reducing TDD noise. The 33pF capacitor is applied to filter out 900MHz RF interference when the module is transmitting at EGSM900MHz, and without placing this capacitor, TDD

noise could be heard; while the 10pF capacitor is used to filter out 1800MHz RF interference. Please note that the frequency resonant point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitors for filtering out RF interference when the module is working at GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the audio channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, customers can choose a suitable capacitor based on the test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF interference should be close to the audio interface, and the audio trace should be as short as possible.

In order to decrease radio or other signal interference, the RF antenna should be placed away from audio interface and trace. The power trace could not be parallel with and also kept far away from the audio trace.

The differential audio traces must be routed according to the differential signal layout principles.

3.10.2. Microphone Interface Design

AIN channels come with internal bias supply voltage for external electret microphone. A reference circuit is shown in the following figure.

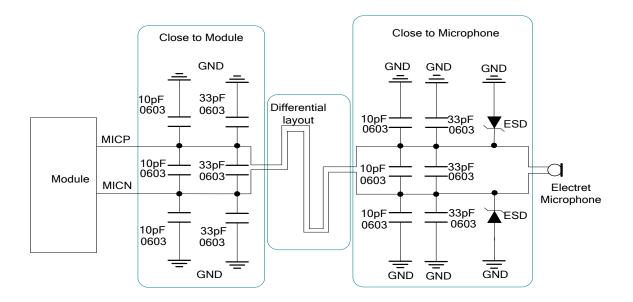


Figure 21: Reference Design for Microphone Interface

3.10.3. Speaker Interface Design

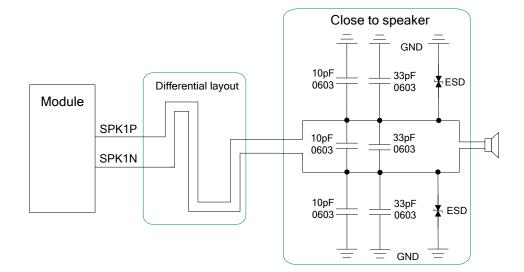


Figure 22: Reference Design for Speaker Interface

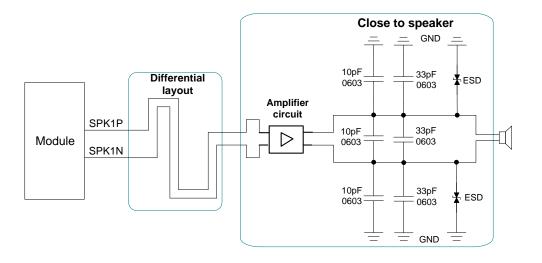
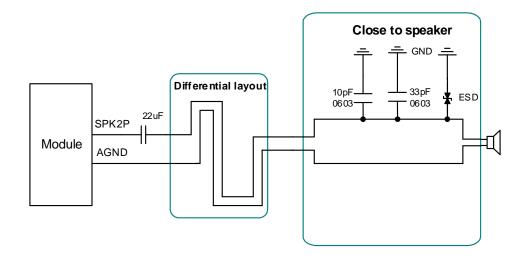
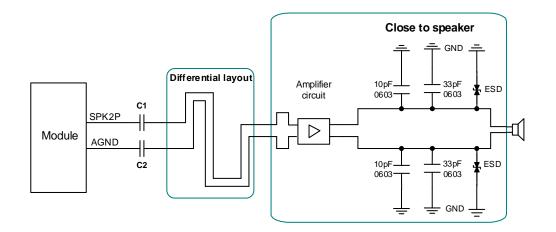




Figure 23: Reference Design for Speaker with an Amplifier

Figure 25: Reference Design for Speaker with an Amplifier for AOUT2

Customers can choose suitable differential audio amplifiers from *Texas Instrument*'s website (<u>http://www.ti.com</u>). There are also other excellent audio amplifier vendors in the market.

NOTE

The value of C1 and C2 here depends on the input impedance of audio amplifier.

3.10.4. Earphone Interface Design

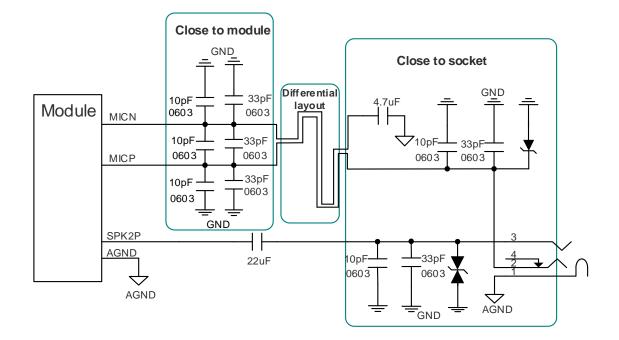


Figure 26: Reference Design for Earphone Interface

3.10.5. Audio Characteristics

Table 10: Typical Electret Microphone Characteristics

Parameter	Min.	Тур.	Max.	Unit
Working Voltage	1.8	2	2.4	V
Working Current			1000	μΑ
External Microphone Load Resistance	2			ΚΩ

Table 11: Typical Speaker Characteristics

Parameter			Min.	Тур.	Max.	Unit
	Single ended	Load resistance		32		Ω
AOUT1 Output	Single-ended	Reference level	0		1.85	Vpp
	Differential	Load resistance		32		Ω

		Reference level	0		3.7	Vpp
AOUT2	Load resistance		32		Ω	
Output	Single-ended	Reference level	0		0.92	Vpp

3.11. PCM Interface*

TBD.

NOTE

"*" means under development.

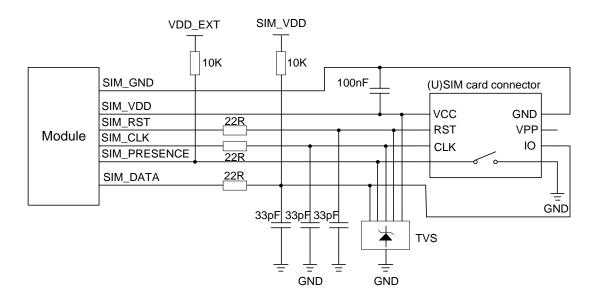
3.12. (U)SIM Interface

The (U)SIM interface supports the functionality of the GSM Phase 1 specification, the functionality of the new GSM Phase 2+ specification, and FAST 64 kbps (U)SIM card (intended for use with (U)SIM application toolkit) as well.

The (U)SIM interface is powered by an internal regulator in the module. Both 1.8V and 3.0V (U)SIM cards are supported.

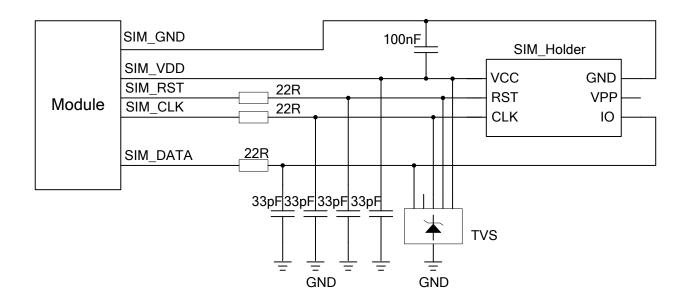
Table 12: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	Description	Multiplexing Function ¹⁾
SIM_VDD	14	Supply power for (U)SIM card. Automatic detection of (U)SIM card voltage. 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
SIM_CLK	13	Clock signal of (U)SIM card	
SIM_DATA	11	Data signal of (U)SIM card	
SIM_RST	12	Reset signal of (U)SIM card.	



SIM_GND	10	(U)SIM card ground.	
SIM_PRESENCE	19	(U)SIM card insertion detection.	DTR

NOTE


¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these multiplexing functions, only one peripheral should be enabled at a time.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

Figure 27: Reference Circuit for (U)SIM Interface with the 8-pin (U)SIM Card Connector

If (U)SIM card insertion detection function is not used, keep pin SIM_PRESENCE unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

Figure 28: Reference Circuit for (U)SIM Interface with the 6-pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in application, please follow the below criteria in the (U)SIM circuit design:

- Keep the placement of (U)SIM card connector as close as possible to the module. Keep the trace length less than 200mm as far as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Assure the trace between the ground of module and that of (U)SIM card connector is short and wide. Keep the trace width of ground no less than 0.5mm to maintain the same electric potential. The bypass capacitor between SIM_VDD and SIM_GND should be not more than 1µF and be placed close to the (U)SIM card connector.
- To avoid cross talk between SIM_DATA and SIM_CLK, keep them away from each other and shield them separately with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should be not more than 50pF. The ESD protection device should be placed as close to (U)SIM card connector as possible, and make sure the (U)SIM card signal lines go through the ESD protection device from (U)SIM card connector first and then to the module. The 22Ω resistors should be connected in series between the module and the (U)SIM card connector so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on SIM_DATA line can improve anti-jamming capability upon applying of long layout trace and sensitive occasion, and it should be placed close to the (U)SIM card connector.

3.13. ADC

The module provides an ADC channel to measure the value of voltage. Please give priority to the use of ADC0 channel. The value of voltage applied on ADC0 channel can be read by **AT+QADC**. For details of this AT command, please refer to the **document [1]**.

In order to improve the accuracy of ADC, the layout of ADC should be surrounded by ground.

Table 13: Pin Definition of ADC

Pin Name	Pin No.	Description
AVDD	8	Reference voltage of ADC circuit
ADC0	9	Analog to digital converter.

Table 14: Characteristics of ADC

Item	Min.	Тур.	Max.	Units
Voltage Range	0		1.8	V
ADC Resolution		10		bits
ADC Accuracy		2.7		mV

3.14. RI Behaviors

Table 15: RI Behaviors

State	RI Response		
Standby	HIGH		
	Change to LOW, then:		
	1. Change to HIGH when call is established.		
Voice call	2. Use ATH to hang up the call; RI changes to HIGH.		
	3. Caller hangs up, RI changes to HIGH first, and changes to LOW for 120ms		
	indicating URC "NO CARRIER", then changes to HIGH again.		

	4. Change to HIGH when SMS is received.
SMS	When a new SMS comes, RI changes to LOW and holds for about 120ms, then changes to HIGH.
URC	Certain URCs can cause RI staying in LOW for 120ms.

If the module is used as a caller, RI would remain in HIGH except URC or SMS is received.

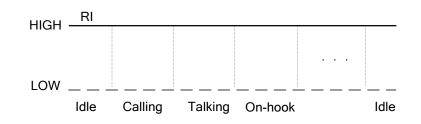


Figure 29: RI Behavior as a Caller

On the other hand, when it is used as a receiver, the timing of RI is shown below.

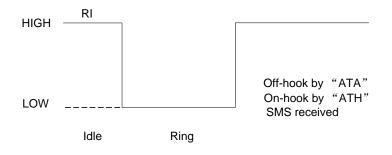


Figure 30: RI Behavior as a Receiver of Voice Calling

When URC or SMS is received, the timing of RI is shown below.

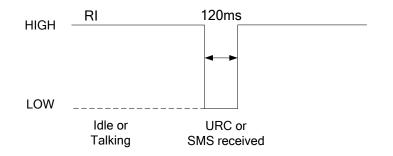


Figure 31: RI Behavior of URC or SMS Received

3.15. Network Status Indication

The NETLIGHT signal can be used to drive a network status indicator LED. The working state of this pin is listed in the following table.

Table 16: Working State of NETLIGHT

State	Module Function
OFF	The module is not running.
64ms ON/800ms OFF	The module is not synchronized with network.
64ms ON/2000ms OFF	The module is synchronized with network.
64ms ON/600ms OFF	GPRS data transmission upon PPP dial-up connection.

A reference circuit is shown as below.

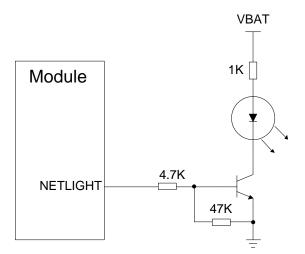


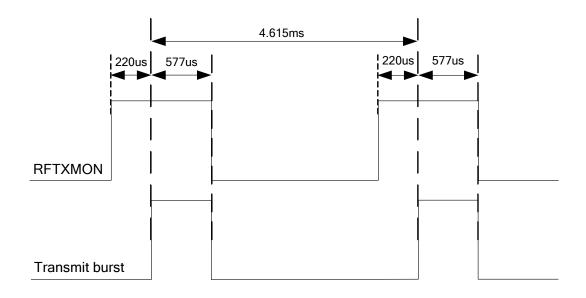
Figure 32: Reference Design for NETLIGHT

3.16. RF Transmitting Signal Indication

The module provides a RFTXMON pin which will rise when the transmitter is active and fall after the transmitting activity is completed.

Table 17: Pin Definition of RFTXMON

Pin Name	Pin No.	Description
RFTXMON	25	Transmission signal indication


There are two different modes for this function:

1) Active during the transmitting activity

RFTXMON is used to indicate the transmit burst. If it outputs a high level, there will be a transmit burst 220us later.

AT+QCFG="RFTXburst",1 can be executed to enable the function.

The timing of the RFTXMON signal is shown below.

Figure 33: RFTXMON Signal During Burst Transmission

2) Active during the call

RFTXMON will output a high level during a call and the pin will output a low level after being hanged up.

AT+QCFG="RFTXburst",2 can be executed to enable the function.

The timing of the RFTXMON signal is shown below.

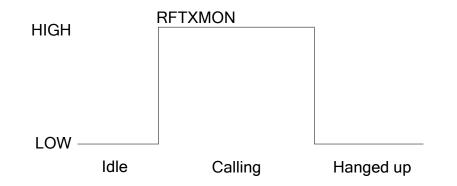


Figure 34: RFTXMON Signal During Call

4.1. GSM Antenna Interface

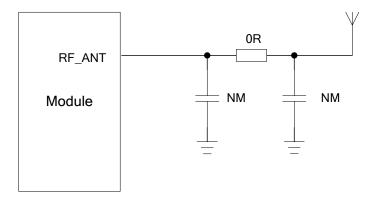

M65 has a GSM antenna interface with an impedance of 50Ω . The pin definition of GSM antenna interface is as follows:

Table 18: Pin Definition of GSM Antenna Interface

Pin Name	Pin No.	Description
RF_ANT	35	GSM antenna pad
GND	34, 36, 37	Ground

4.1.1. Reference Design

The external antenna must be matched properly to achieve the best performance, so the matching circuit is necessary. The reference design for GSM antenna is shown as below.

Figure 35: Reference Design for GSM Antenna

M65 provides an RF antenna pad for antenna connection. The RF trace in host PCB connected to the module RF antenna pad should be coplanar waveguide line or microstrip line, whose characteristic impedance should be close to 50Ω . M65 comes with grounding pads which are next to the antenna pad in order to give a better grounding. Besides, a π type match circuit is suggested to be used to adjust the RF

performance.

To minimize the loss on RF trace and RF cable, please take design into account carefully. The following table shows the requirement on GSM antenna.

Table 19: Antenna Cable Requirements

Туре	Requirements
GSM850/EGSM900	Cable insertion loss <1dB
DCS1800/PCS1900	Cable insertion loss <1.5dB

Table 20: Antenna Requirements

Туре	Requirements
Frequency Range	GSM850/EGSM900/DCS1800/PCS1900
VSWR	≤ 2
Gain (dBi)	1
Max Input Power (W)	50
Input Impedance (Ω)	50
Polarization Type	Vertical

4.1.2. RF Output Power

Table 21: RF Output Power

Frequency	Max.	Min.
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB

4.1.3. **RF Receiving Sensitivity**

Table 22: RF Receiving Sensitivity

Frequency	Receive Sensitivity
GSM850	< -108dBm
EGSM900	< -108dBm
DCS1800	< -107dBm
PCS1900	< -107dBm

4.1.4. Operating Frequencies

Table 23: Operating Frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.1.5. RF Cable Soldering

Soldering RF cable to RF pad of module in a correct way will reduce the loss on the path of RF, please refer to the following example of RF soldering.

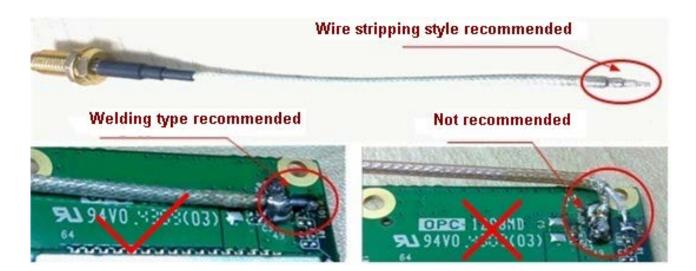


Figure 36: RF Soldering Sample

5 Electrical, Reliability and Radio Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table:

Table 24: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.3	+4.5	V
Peak Current of Power Supply	0	2.0	A
RMS Current of Power Supply (during one TDMA-frame)	0	0.7	A
Voltage at Digital Pins	-0.3	3.08	V
Voltage at Analog Pins	-0.3	3.08	V

5.2. Operation and Storage Temperatures

The following table lists the operation and storage temperatures of the module.

Table 25: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operation temperature range ¹⁾	-35	+25	+75	°C
Extended temperature range ²⁾	-40		+85	°C

Storage Temperature Range

°C

NOTES

1. ¹⁾ Within operation temperature range, the module is 3GPP compliant.

-40

2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.

5.3. Power Supply Ratings

Table 26: The Module Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
	Supply voltage	The actual input voltages must stay between the minimum and maximum values.	3.45	4.0	4.25	V
VBAT	Voltage drop during burst transmission	Maximum power control level on GSM850 and EGSM900.			400	mV
		Power down mode		39		μA
		Sleep mode @DRX=5		1.2		mA
		Minimum functionality mode				
		AT+CFUN=0				
		Idle mode		9.5		mA
		Sleep mode		0.8		mA
		AT+CFUN=4				
		Idle mode		9.5		mA
IVBAT	Average supply	Sleep mode		0.8		mA
	current	Talk mode				
		GSM850/EGSM900 ¹⁾		241/229		mA
		DCS1800/PCS1900 ²⁾		178/156		mA
		Data mode, GPRS (3 Rx, 2 Tx)				
		GSM850/EGSM900 ¹⁾		366/343		mA
		DCS1800/PCS1900 ²⁾		251/222		mA
		Data mode, GPRS (2 Rx, 3 Tx)				
		GSM850/EGSM900 ¹⁾		423/397		mA

	DCS1800/PCS1900 ²⁾	283/254		m
	Data mode, GPRS (4 Rx, 1 Tx)			
	GSM850/EGSM900 1)	234/221		m
	DCS1800/PCS1900 ²⁾	165/149		m
	Data mode, GPRS (1 Rx, 4 Tx)			
	GSM850/EGSM900 1)	457/437		m
	DCS1800/PCS1900 ²⁾	315/283		m
Peak supply				
current (during	Maximum power control level	1.0	0	۸
transmission	on GSM850 and EGSM900.	1.8	2	A
slot)				

NOTES

- 1. ¹⁾ Power control level PCL 5.
- 2. ²⁾ Power control level PCL 0.

5.4. Current Consumption

Table 27: The Module Current Consumption

Condition	Current Consumption
Voice Call	
	@power level #5 <300mA, Typical 241mA
GSM850	@power level #12, Typical 103mA
	@power level #19, Typical 73mA
	@power level #5 <300mA, Typical 229mA
EGSM900	@power level #12, Typical 102mA
	@power level #19, Typical 74mA
	@power level #0 <250mA, Typical 177mA
DCS1800	@power level #7, Typical 87mA
	@power level #15, Typical 68mA
	@power level #0 <250mA, Typical 156mA
PCS1900	@power level #7, Typical 85mA
	@power level #15, Typical 67mA
GPRS Data	

DATA Mode, GPRS (3 Rx, 2 Tx) CLASS 12

GSM850	@power level #5 <550mA, Typical 366mA				
EGSM900	@power level #5 <550mA, Typical 343mA				
DCS1800	@power level #0 <450mA, Typical 251mA				
PCS1900	@power level #0 <450mA, Typical 222mA				
DATA Mode, GPRS (2 Rx, 3	3 Tx) CLASS 12				
GSM850	@power level #5 <640mA, Typical 423mA				
EGSM900	@power level #5 <600mA, Typical 397mA				
DCS1800	@power level #0 <490mA, Typical 283mA				
PCS1900	@power level #0 <490mA, Typical 254mA				
DATA Mode, GPRS (4 Rx,1 Tx) CLASS 12					
GSM850	@power level #5 <350mA, Typical 234mA				
EGSM900	@power level #5 <350mA, Typical 221mA				
DCS1800	@power level #0 <300mA, Typical 165mA				
PCS1900	@power level #0 <300mA, Typical 149mA				
DATA Mode, GPRS (1 Rx, 4 Tx) CLASS 12					
GSM850	@power level #5 <660mA, Typical 453mA				
EGSM900	@power level #5 <660mA, Typical 437mA				
DCS1800	@power level #0 <530mA, Typical 315mA				
PCS1900	@power level #0 <530mA, Typical 283mA				

NOTE

GPRS Class 12 is the default setting. The module can be configured from GPRS Class 1 to Class 12. Setting to lower GPRS class would make it easier to design the power supply for the module.

5.5. Electrostatic Discharge

The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module's electrostatic discharge characteristics.

Tested Point	Contact Discharge	Air Discharge	
VBAT, GND	±5KV	±10KV	
RF_ANT	±5KV	±10KV	
TXD, RXD	±2KV	±4KV	
Others	±0.5KV	±1KV	

Table 28: Electrostatic Discharge Characteristics (25°C, 45% Relative Humidity)

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of M65 module. All dimensions are measured in mm, and the tolerances for dimensions without tolerance values are ± 0.05 mm.

6.1. Mechanical Dimensions of the Module

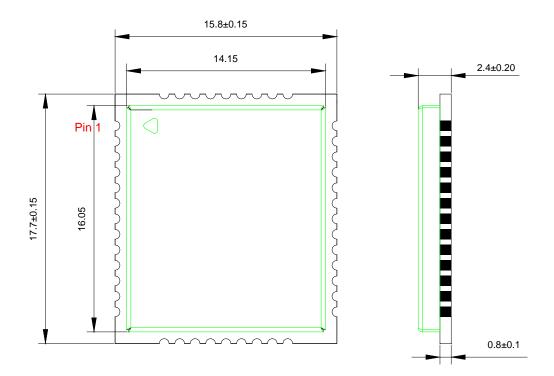


Figure 37: M65 Module Top and Side Dimensions

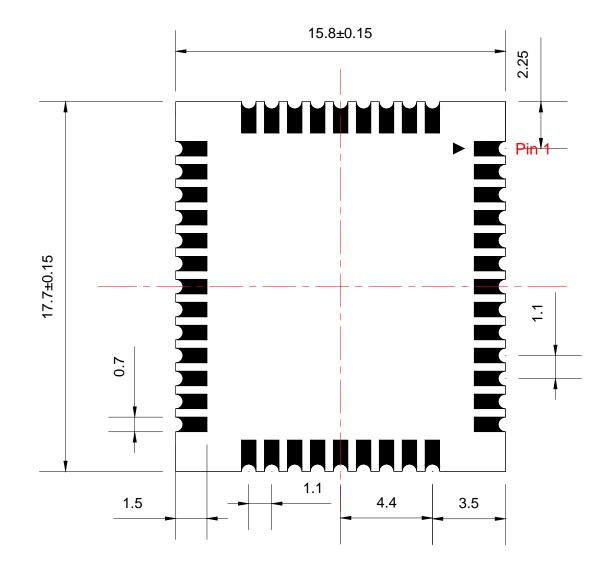


Figure 38: M65 Module Bottom Dimensions

6.2. Recommended Footprint

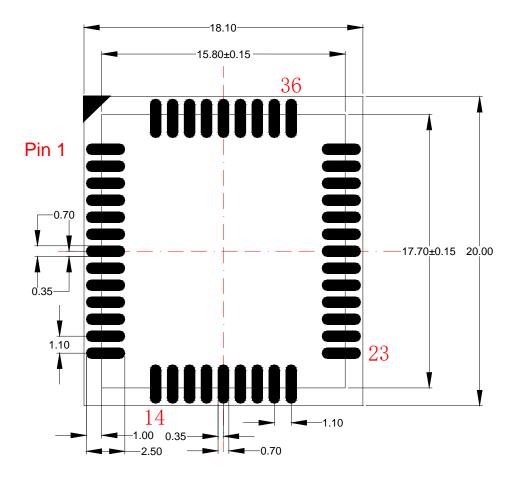


Figure 39: Recommended Footprint (Top View)

NOTES

For easy maintenance of the module, please keep about 3mm between the module and other components in the host PCB.

6.3. Top and Bottom Views of the Module

Figure 40: Top View of the Module

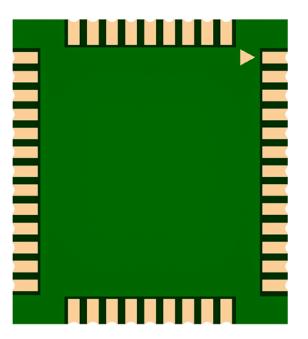


Figure 41: Bottom View of the Module

NOTE

These are renderings of M65 module. For authentic appearance, please refer to the module that you receive from Quectel.

7 Storage and Manufacturing

7.1. Storage

M65 is stored in a vacuum-sealed bag. It is rated at MSL 3, and storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of \leq 30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

7.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.15mm~0.18mm. For more details, please refer to **document [5]**.

It is suggested that the peak reflow temperature is 238°C ~245°C, and the absolute maximum reflow temperature is 245°C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

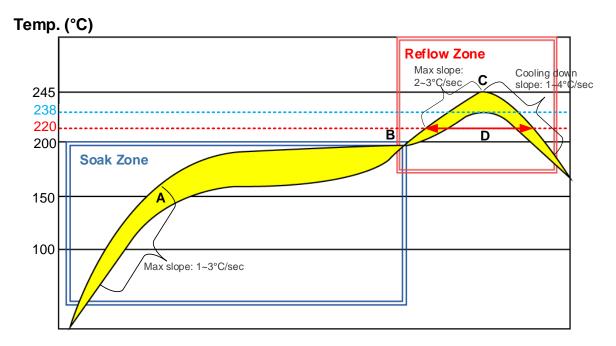


Figure 42: Recommended Reflow Soldering Thermal Profile

Table 29: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C)	60 to 120 sec
Reflow Zone	
Max slope	2 to 3°C/sec
Reflow time (D: over 220°C)	40 to 60 sec
Max temperature	238°C ~ 245°C
Cooling down slope	1 to 4°C/sec
Reflow Cycle	

Max reflow cycle

1

NATEO	
NOTES	
NOILO	

- 1. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 2. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.

7.3. Packaging

M65 is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until the devices are ready to be soldered onto the application.

The following figures show the packaging details, measured in mm.

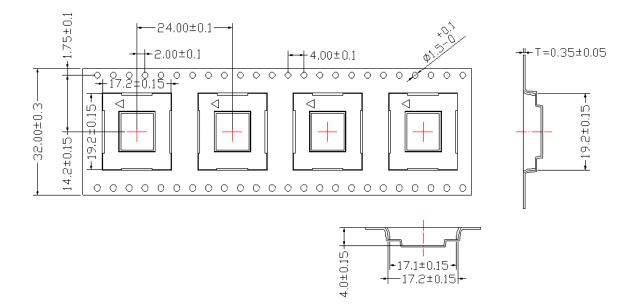
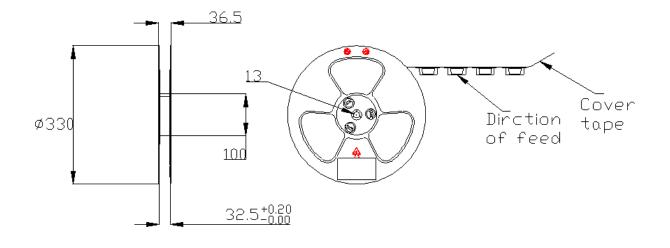



Figure 43: Tape Dimensions

Table 30: Reel Packaging

Model Name	MOQ for MP	Minimum Package: 250pcs	Minimum Package x 4=1000pcs
		Size: 370mm × 350mm × 56mm	Size: 380mm × 250mm × 365mm
M65	250pcs	N.W: 0.32kg	N.W: 1.28kg
		G.W: 1.08kg	G.W: 4.8kg

8 Appendix A References

Table 31: Reference Documents

SN	Document Name	Remark
[1]	Quectel_M65_AT_Commands_Manual	M65 AT commands manual
[2]	Quectel_GSM_UART_Application_Note	GSM UART port application note
[3]	Quectel_GSM_EVB_User_Guide	GSM EVB user guide
[4]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[5]	Quectel_Module_Secondary_SMT_User_Guide	Module secondary SMT user guide
[6]	Quectel_GSM_Module_Digital_IO_Application_Note	GSM Module Digital IO Application Note
[7]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[8]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[9]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[10]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the (U)SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment ((U)SIM – ME) interface
[11]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment ((U)SIM – ME) interface

	Digital cellular telecommunications
[12] GSM 03.38	(Phase 2+); Alphabets and
	language-specific information
	Digital cellular telecommunications
[13] GSM 11.10	(Phase 2); Mobile Station (MS)
[13] GSM 11.10	conformance specification; Part 1:
	Conformance specification

Table 32: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARFCH	Absolute Radio Frequency Channel Number
ASIC	Application Specific Integrated Circuit
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear to Send
DRX	Discontinuous Reception
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FR	Full Rate
GPRS	General Packet Radio Service

GSM	Global System for Mobile Communications
G.W	Gross Weight
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
lomax	Maximum Output Load Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
ME	Mobile Equipment
MOQ	Minimum Order Quantity
MP	Manufacture Product
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
N.W	Net Weight
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
(U)SIM	(Universal) Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access

TE	Terminal Equipment
ТХ	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
Vomax	Maximum Output Voltage Value
Vonorm	Normal Output Voltage Value
Vomin	Minimum Output Voltage Value
VIHmax	Maximum Input High Level Voltage Value
Vı⊩min	Minimum Input High Level Voltage Value
Vi∟max	Maximum Input Low Level Voltage Value
Vı∟min	Minimum Input Low Level Voltage Value
Vimax	Absolute Maximum Input Voltage Value
Vinorm	Absolute Normal Input Voltage Value
Vimin	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
VoHmin	Minimum Output High Level Voltage Value
Vo∟max	Maximum Output Low Level Voltage Value
V _{o∟} min	Minimum Output Low Level Voltage Value
Phonebook Abb	previations
LD	(U)SIM Last Dialing phonebook (list of numbers most recently dialed)
MC	ME list of unanswered MT Calls (missed calls)
ON	(U)SIM (or ME) Own Numbers (MSISDNs) list
RC	ME list of Received Calls
SM	(U)SIM phonebook

9 Appendix B GPRS Coding Schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in the following table.

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl. USF and BCS	BCS	Tail	Coded Bits	Punctured Bits	Data Rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Table 33: Description of Different Coding Schemes

Radio block structure of CS-1, CS-2 and CS-3 is shown as the figure below.

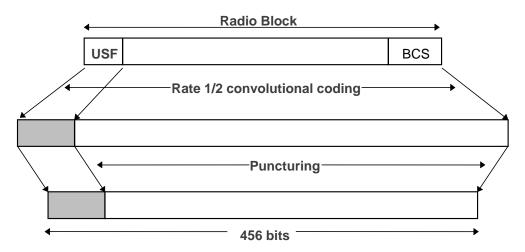


Figure 45: Radio Block Structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as the following figure.

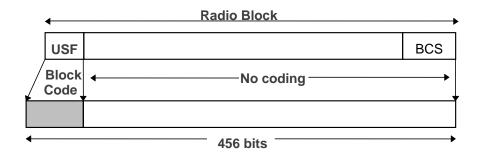


Figure 46: Radio Block Structure of CS-4

10 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

Table 34: GPRS Multi-slot Classes